Discriminant Factor Analysis (DFA) is a supervised classification method. Using a linear combination of the input variables, DFA finds new orthogonal axes (canonical values) to minimize the variance within each given class and maximize variance between classes.
Value
A DFA
object with the following output
slots:
scores | (DatasetExperiment) |
loadings | (data.frame) |
eigenvalues | (data.frame) |
that | (DatasetExperiment) |
References
Manly B (1986). Multivariate Statistical Methods: A Primer. Chapman and Hall, Boca Raton.
Examples
M = DFA(
factor_name = "V1",
number_components = 2)
D = iris_DatasetExperiment()
M = DFA(factor_name='Species')
M = model_apply(M,D)