Skip to contents
-
ANOVA()
- Analysis of Variance
-
AUC()
- Area under ROC curve
-
DFA()
- Discriminant Factor Analysis
-
DatasetExperiment_boxplot()
- Feature distribution histogram
-
DatasetExperiment_dist()
- Feature distribution histogram
-
DatasetExperiment_factor_boxplot()
- Factor boxplot
-
DatasetExperiment_heatmap()
- DatasetExperiment heatmap
-
HCA()
- Hierarchical Cluster Analysis
-
HSD()
- Tukey's Honest Significant Difference
-
HSDEM()
- Tukey's Honest Significant Difference using estimated marginal means
-
MTBLS79_DatasetExperiment()
- MTBLS79: Direct infusion mass spectrometry metabolomics dataset: a benchmark for data processing and quality control
-
OPLSDA()
- Orthogonal Partial Least Squares regression
-
OPLSR()
- Orthogonal Partial Least Squares regression
-
PCA()
- Principal Component Analysis (PCA)
-
PLSDA()
- Partial least squares discriminant analysis
-
PLSR()
- Partial least squares regression
-
SVM()
- Support Vector Machine Classifier
-
as_data_frame(<filter_na_count>)
as_data_frame(<ttest>)
as_data_frame(<wilcox_test>)
- Convert to data.frame
-
autoscale()
- Autoscaling
-
balanced_accuracy()
- Balanced Accuracy
-
blank_filter()
- Blank filter
-
blank_filter_hist()
- Histogram of blank filter fold changes
-
bootstrap()
- Bootstrap resampling
-
calculate(<AUC>)
calculate(<balanced_accuracy>)
calculate(<r_squared>)
- Calculate metric
-
chart_plot(<dfa_scores_plot>,<DFA>)
chart_plot(<scatter_chart>,<DatasetExperiment>)
chart_plot(<pca_correlation_plot>,<PCA>)
chart_plot(<pca_scores_plot>,<PCA>)
chart_plot(<pca_biplot>,<PCA>)
chart_plot(<pca_loadings_plot>,<PCA>)
chart_plot(<pca_scree_plot>,<PCA>)
chart_plot(<pca_dstat_plot>,<PCA>)
chart_plot(<plsr_prediction_plot>,<PLSR>)
chart_plot(<plsr_residual_hist>,<PLSR>)
chart_plot(<plsr_qq_plot>,<PLSR>)
chart_plot(<plsr_cook_dist>,<PLSR>)
chart_plot(<pls_scores_plot>,<PLSR>)
chart_plot(<plsda_predicted_plot>,<PLSDA>)
chart_plot(<plsda_roc_plot>,<PLSDA>)
chart_plot(<pls_vip_plot>,<PLSR>)
chart_plot(<pls_regcoeff_plot>,<PLSR>)
chart_plot(<blank_filter_hist>,<blank_filter>)
chart_plot(<confounders_lsq_barchart>,<confounders_clsq>)
chart_plot(<confounders_lsq_boxplot>,<confounders_clsq>)
chart_plot(<feature_boxplot>,<DatasetExperiment>)
chart_plot(<mv_histogram>,<DatasetExperiment>)
chart_plot(<mv_boxplot>,<DatasetExperiment>)
chart_plot(<DatasetExperiment_dist>,<DatasetExperiment>)
chart_plot(<DatasetExperiment_boxplot>,<DatasetExperiment>)
chart_plot(<compare_dist>,<DatasetExperiment>)
chart_plot(<DatasetExperiment_heatmap>,<DatasetExperiment>)
chart_plot(<DatasetExperiment_factor_boxplot>,<DatasetExperiment>)
chart_plot(<feature_profile_array>,<DatasetExperiment>)
chart_plot(<feature_profile>,<DatasetExperiment>)
chart_plot(<fold_change_plot>,<fold_change>)
chart_plot(<fs_line>,<forward_selection_by_rank>)
chart_plot(<glog_opt_plot>,<glog_transform>)
chart_plot(<gs_line>,<grid_search_1d>)
chart_plot(<hca_dendrogram>,<HCA>)
chart_plot(<kfoldxcv_grid>,<kfold_xval>)
chart_plot(<kfoldxcv_metric>,<kfold_xval>)
chart_plot(<kw_p_hist>,<kw_rank_sum>)
chart_plot(<mv_feature_filter_hist>,<mv_feature_filter>)
chart_plot(<mv_sample_filter_hist>,<mv_sample_filter>)
chart_plot(<permutation_test_plot>,<permutation_test>)
chart_plot(<plsda_feature_importance_plot>,<PLSDA>)
chart_plot(<pqn_norm_hist>,<pqn_norm>)
chart_plot(<resample_chart>,<resample>)
chart_plot(<rsd_filter_hist>,<rsd_filter>)
chart_plot(<feature_profile>,<sb_corr>)
chart_plot(<svm_plot_2d>,<SVM>)
chart_plot(<tSNE_scatter>,<tSNE>)
chart_plot(<tic_chart>,<DatasetExperiment>)
chart_plot(<wilcox_p_hist>,<wilcox_test>)
- chart_plot method
-
classical_lsq()
- Univariate Classical Least Squares Regression
-
compare_dist()
- Compare distributions
-
confounders_clsq()
- Check for confounding factors
-
confounders_lsq_barchart()
- Confounding factor relative change barchart
-
confounders_lsq_boxplot()
- Confounding factor relative change boxplot
-
constant_sum_norm()
- Normalisation to constant sum
-
corr_coef()
- Correlation coefficient
-
dfa_scores_plot()
- DFA scores plot
-
dratio_filter()
- Dispersion ratio filter
-
equal_split()
- Equal group sized sampling
-
feature_boxplot()
- Feature boxplot
-
feature_profile()
- Feature profile
-
feature_profile_array()
- Feature profile
-
filter_by_name()
- Filter by name
-
filter_na_count()
- Minimum number of measured values filter
-
filter_smeta()
- Filter by sample meta data
-
fisher_exact()
- Fisher Exact Test
-
fold_change()
- Fold change
-
fold_change_int()
- Fold change for interactions between factors
-
fold_change_plot()
- Fold change plot
-
forward_selection_by_rank()
- Forward selection by rank
-
fs_line()
- Forward selection line plot
-
glog_opt_plot()
- Glog optimisation
-
glog_transform()
- Generalised logarithmic transform
-
grid_search_1d()
- One dimensional grid search
-
gs_line()
- Grid search line plot
-
hca_dendrogram()
- HCA dendrogram
-
kfold_xval()
- k-fold cross-validation
-
kfoldxcv_grid()
- k-fold cross validation plot
-
kfoldxcv_metric()
- kfoldxcv metric plot
-
knn_impute()
- kNN missing value imputation
-
kw_p_hist()
- Histogram of p values
-
kw_rank_sum()
- Kruskal-Wallis rank sum test
-
linear_model()
- Linear model
-
log_transform()
- logarithm transform
-
mean_centre()
- Mean centre
-
mean_of_medians()
- Mean of medians
-
mixed_effect()
- Mixed effects model
-
model_apply(<ANOVA>,<DatasetExperiment>)
model_apply(<HSD>,<DatasetExperiment>)
model_apply(<mixed_effect>,<DatasetExperiment>)
model_apply(<HSDEM>,<DatasetExperiment>)
model_apply(<classical_lsq>,<DatasetExperiment>)
model_apply(<confounders_clsq>,<DatasetExperiment>)
model_apply(<constant_sum_norm>,<DatasetExperiment>)
model_apply(<corr_coef>,<DatasetExperiment>)
model_apply(<split_data>,<DatasetExperiment>)
model_apply(<equal_split>,<DatasetExperiment>)
model_apply(<filter_smeta>,<DatasetExperiment>)
model_apply(<fisher_exact>,<DatasetExperiment>)
model_apply(<fold_change>,<DatasetExperiment>)
model_apply(<fold_change_int>,<DatasetExperiment>)
model_apply(<HCA>,<DatasetExperiment>)
model_apply(<knn_impute>,<DatasetExperiment>)
model_apply(<kw_rank_sum>,<DatasetExperiment>)
model_apply(<log_transform>,<DatasetExperiment>)
model_apply(<mean_of_medians>,<DatasetExperiment>)
model_apply(<nroot_transform>,<DatasetExperiment>)
model_apply(<pairs_filter>,<DatasetExperiment>)
model_apply(<prop_na>,<DatasetExperiment>)
model_apply(<rsd_filter>,<DatasetExperiment>)
model_apply(<sb_corr>,<DatasetExperiment>)
model_apply(<stratified_split>,<DatasetExperiment>)
model_apply(<tSNE>,<DatasetExperiment>)
model_apply(<ttest>,<DatasetExperiment>)
model_apply(<vec_norm>,<DatasetExperiment>)
model_apply(<wilcox_test>,<DatasetExperiment>)
- Apply method
-
model_predict(<DFA>,<DatasetExperiment>)
model_predict(<PCA>,<DatasetExperiment>)
model_predict(<PLSR>,<DatasetExperiment>)
model_predict(<PLSDA>,<DatasetExperiment>)
model_predict(<autoscale>,<DatasetExperiment>)
model_predict(<blank_filter>,<DatasetExperiment>)
model_predict(<constant_sum_norm>,<DatasetExperiment>)
model_predict(<dratio_filter>,<DatasetExperiment>)
model_predict(<filter_by_name>,<DatasetExperiment>)
model_predict(<filter_na_count>,<DatasetExperiment>)
model_predict(<filter_smeta>,<DatasetExperiment>)
model_predict(<glog_transform>,<DatasetExperiment>)
model_predict(<linear_model>,<DatasetExperiment>)
model_predict(<mean_centre>,<DatasetExperiment>)
model_predict(<mv_feature_filter>,<DatasetExperiment>)
model_predict(<mv_sample_filter>,<DatasetExperiment>)
model_predict(<OPLSR>,<DatasetExperiment>)
model_predict(<OPLSDA>,<DatasetExperiment>)
model_predict(<pareto_scale>,<DatasetExperiment>)
model_predict(<pqn_norm>,<DatasetExperiment>)
model_predict(<SVM>,<DatasetExperiment>)
model_predict(<vec_norm>,<DatasetExperiment>)
- Model prediction
-
model_reverse(<autoscale>,<DatasetExperiment>)
model_reverse(<mean_centre>,<DatasetExperiment>)
- Reverse preprocessing
-
model_train(<DFA>,<DatasetExperiment>)
model_train(<PCA>,<DatasetExperiment>)
model_train(<PLSR>,<DatasetExperiment>)
model_train(<PLSDA>,<DatasetExperiment>)
model_train(<autoscale>,<DatasetExperiment>)
model_train(<blank_filter>,<DatasetExperiment>)
model_train(<constant_sum_norm>,<DatasetExperiment>)
model_train(<dratio_filter>,<DatasetExperiment>)
model_train(<filter_by_name>,<DatasetExperiment>)
model_train(<filter_na_count>,<DatasetExperiment>)
model_train(<filter_smeta>,<DatasetExperiment>)
model_train(<glog_transform>,<DatasetExperiment>)
model_train(<linear_model>,<DatasetExperiment>)
model_train(<mean_centre>,<DatasetExperiment>)
model_train(<mv_feature_filter>,<DatasetExperiment>)
model_train(<mv_sample_filter>,<DatasetExperiment>)
model_train(<OPLSR>,<DatasetExperiment>)
model_train(<OPLSDA>,<DatasetExperiment>)
model_train(<pareto_scale>,<DatasetExperiment>)
model_train(<pqn_norm>,<DatasetExperiment>)
model_train(<SVM>,<DatasetExperiment>)
model_train(<vec_norm>,<DatasetExperiment>)
- Train a model
-
mv_boxplot()
- Missing value boxplots
-
mv_feature_filter()
- Filter features by missing values
-
mv_feature_filter_hist()
- Histogram of missing values per feature
-
mv_histogram()
- Missing value histogram
-
mv_sample_filter()
- Missing value sample filter
-
mv_sample_filter_hist()
- Histogram of missing values per sample
-
nroot_transform()
- nth root transform
-
ontology_cache()
- ontology cache
-
pairs_filter()
- Pairs filter
-
pareto_scale()
- Pareto scaling
-
pca_biplot()
- PCA biplot
-
pca_correlation_plot()
- PCA correlation plot
-
pca_dstat_plot()
- d-statistic plot
-
pca_loadings_plot()
- PCA loadings plot
-
pca_scores_plot()
- PCA scores plot
-
pca_scree_plot()
- Scree plot
-
permutation_test()
- Permutation test
-
permutation_test_plot()
- permutation_test_plot class
-
permute_sample_order()
- Permute Sample Order
-
pls_regcoeff_plot()
- pls_regcoeff_plot class
-
pls_scores_plot()
plsda_scores_plot()
- PLSDA scores plot
-
pls_vip_plot()
- PLSDA VIP plot
-
plsda_feature_importance_plot()
- PLSDA feature importance summary plot
-
plsda_predicted_plot()
- PLSDA predicted plot
-
plsda_roc_plot()
- PLSDA ROC plot
-
plsr_cook_dist()
- Cook's distance barchart
-
plsr_prediction_plot()
- PLSR prediction plot
-
plsr_qq_plot()
- PLSR QQ plot
-
plsr_residual_hist()
- PLSR residuals histogram
-
pqn_norm()
- Probabilistic Quotient Normalisation (PQN)
-
pqn_norm_hist()
- PQN coefficient histogram
-
prop_na()
- Fisher's exact test for missing values
-
r_squared()
- Coefficient of determination (R-squared)
-
resample()
- Data resampling
-
resample_chart()
- resample_chart class
-
rsd_filter()
- RSD filter
-
rsd_filter_hist()
- RSD histogram
-
run(<bootstrap>,<DatasetExperiment>,<metric>)
run(<forward_selection_by_rank>,<DatasetExperiment>,<metric>)
run(<grid_search_1d>,<DatasetExperiment>,<metric>)
run(<kfold_xval>,<DatasetExperiment>,<metric>)
run(<permutation_test>,<DatasetExperiment>,<metric>)
run(<permute_sample_order>,<DatasetExperiment>,<metric>)
run(<resample>,<DatasetExperiment>,<metric>)
- Runs an iterator, applying the chosen model multiple times.
-
sb_corr()
- Signal/batch correction for mass spectrometry data
-
scatter_chart()
- Group scatter chart
-
split_data()
- Split data
-
stratified_split()
- Stratified sampling
-
svm_plot_2d()
- SVM scatter plot
-
tSNE()
- tSNE
-
tSNE_scatter()
- Feature boxplot
-
tic_chart()
- Total Ion Count chart.
-
ttest()
- t-test
-
vec_norm()
- Vector normalisation
-
wilcox_p_hist()
- Histogram of p values
-
wilcox_test()
- wilcoxon signed rank test