Skip to contents

PCA is a multivariate data reduction technique. It summarises the data in a smaller number of Principal Components that maximise variance.

Usage

PCA(number_components = 2, ...)

Arguments

number_components

(numeric, integer) The number of Principal Components calculated. The default is 2.

...

Additional slots and values passed to struct_class.

Value

A PCA object with the following output slots:

scores(DatasetExperiment) A matrix of PCA scores where each column corresponds to a Principal Component.
loadings(data.frame)
eigenvalues(data.frame)
ssx(numeric)
correlation(data.frame)
that(DatasetExperiment)

Inheritance

A PCA object inherits the following struct classes:

[PCA] >> [model] >> [struct_class]

Examples

M = PCA(
      number_components = 2)