t-Distributed Stochastic Neighbor Embedding.
Usage
tSNE(
dims = 2,
perplexity = 30,
max_iter = 100,
theta = 0.5,
check_duplicates = FALSE,
init = NULL,
eta = 200,
...
)Arguments
- dims
(numeric) The number of tSNE dimensions computed. The default is
2.- perplexity
(numeric) Perplexity parameter. The default is
30.- max_iter
(numeric) The maximum number of tSNE iterations. The default is
100.- theta
(numeric) Speed/accuracy trade-off. A value of 0 gives an exact tSNE. The default is
0.5.- check_duplicates
(logical) Check for duplicates. Allowed values are limited to the following:
"TRUE": Checks for the presence of exact duplicate samples."FALSE": Does not check for exact duplicate samples.
The default is
FALSE.- init
(NULL, data.frame, DatasetExperiment) A set of coordinates for initialising the tSNE algorithm. NULL uses random initialisation. The default is
NULL.- eta
(numeric) The learning rate parameter. The default is
200.- ...
Additional slots and values passed to
struct_class.
Inheritance
A tSNE object inherits the following struct classes: [tSNE] >> [model] >> [struct_class]
References
Krijthe JH (2015). Rtsne: T-Distributed Stochastic Neighbor Embedding using Barnes-Hut Implementation. R package version 0.17, https://github.com/jkrijthe/Rtsne.
van der Maaten L, Hinton G (2008). "Visualizing High-Dimensional Data Using t-SNE." Journal of Machine Learning Research, 9, 2579-2605.
van der Maaten L (2014). "Accelerating t-SNE using Tree-Based Algorithms." Journal of Machine Learning Research, 15, 3221-3245.