A plot of the regression coefficients from a PLSDA model.
Arguments
- factor_name
(character) The name of a sample-meta column to use.
- style
(character) Plot style. Allowed values are limited to the following:
"boxplot"
: A boxplot."violin"
: A violin plot."density"
: A density plot.
The default is
"boxplot"
.- ycol
(character, numeric, integer) The column of the Y block to be plotted. The default is
1
.- ...
Additional slots and values passed to
struct_class
.
Value
A
plsda_predicted_plot
object. This object has no output
slots.
See chart_plot
in the struct
package to plot this chart object.
Inheritance
A plsda_predicted_plot
object inherits the following struct
classes: [plsda_predicted_plot]
>> [chart]
>> [struct_class]
References
Liland K, Mevik B, Wehrens R (2023). pls: Partial Least Squares and Principal Component Regression. R package version 2.8-3, https://CRAN.R-project.org/package=pls.
Wickham H (2016). ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York. ISBN 978-3-319-24277-4, https://ggplot2.tidyverse.org.
Examples
M = plsda_predicted_plot(
factor_name = "V1",
style = "boxplot",
ycol = 1)
D = iris_DatasetExperiment()
M = mean_centre()+PLSDA(factor_name='Species')
M = model_apply(M,D)
C = plsda_predicted_plot(factor_name='Species')
chart_plot(C,M[2])